Making cotton fabrics more durable in outdoor environments

Scientists have investigated UV-curable cellulose acetate butyrate-based oligomers and their use for cotton fabric coatings.

The researchers assume that their intelligent microcapsules will be used for coatings of outdoor textiles in the future. Source: StockSnap - Pixabay (symbolic image)

In order to improve the thermal stability and flexibility, cellulose acetate butyrate (CAB) was modified with toluene diisocyanate–hydroxyethyl methacrylate (TDI–HEMA) adduct in various molar ratios. The obtained oligomer was characterised by proton nuclear magnetic resonance (1H NMR) and Fourier transform infrared (FTIR) spectroscopies. Gloss, cross-hatch, contact angle, and Taber abrasion tests were all used to investigate the film forming performance of the modified CAB oligomers on glass plates.

The UV-cured free films of the synthesised oligomers were examined in terms of the mechanical tests. By using the synthesised CAB oligomers, coating formulations were prepared and applied onto cotton fabrics in order to make the cotton fabrics more durable in outdoor environments. The existence of the coating layer on the fabric surfaces was investigated by scanning electron microscopy (SEM).

Good mechanical poperties

The coated UV-cured fabrics were evaluated separately in terms of abrasion, thermal conductivity, and air and water vapor permeability properties. Results proved that the oligomer (50%-CAB) in which 50% of the hydroxyl groups of CAB were reacted with TDI–HEMA adduct showed the best mechanical properties with the highest tensile strength and modulus values. Considering the coated fabrics, the least deformation against abrasion, the highest air/water vapor permeability, and the best thermal conductivity were all recorded in 50%-CAB coated sample.

The study has been published in Journal of Coatings Technology and Research, Volume 18, 2021.

Hersteller zu diesem Thema

This could also be interesting for you!