Cathodic protection performance of zinc-rich epoxy coatings

Researchers have presented a study on the influence of graphene on the cathodic protection of zinc-rich epoxy coatings is investigated. Graphene with low content prolongs cathodic protection by decreasing coating porosity.

Test results revealed that the graphene content exhibits an optimum of 0.3 wt%.  Image source: Mimzy - Pixabay (symbol image).

Graphene has been proved to benefit the corrosion protection of zinc-rich epoxy coatings (ZREs) in 3.5 wt% NaCl solution. However, galvanic corrosion between graphene and zinc powders and its influence on the cathodic protection is widely unknown. In a new paper, ZREs with different graphene contents were prepared, and open-circuit potential and electrochemical impedance spectroscopy techniques were employed to evaluate the cathodic protection of the coatings. To further investigate the influence mechanism of graphene content on ZRE, the porosity of the coatings was measured with mercury intrusion porosimetry, and the corrosion rate of zinc was measured with the H2 evolution technique.

Prolonged cathodic protection

The results from these experiments revealed that the graphene content exhibits an optimum of 0.3 wt%. With a graphene content lower than 0.3 wt%, the porosity of the coating decreases with increasing graphene content, which will decrease the corrosion rate of zinc and prolong the cathodic protection duration of the coating. With a graphene content higher than 0.3 wt%, the galvanic corrosion between graphene and zinc powders increases the corrosion rate of zinc, leading to a shortened cathodic protection duration.

The study has been published in Progress in Organic Coatings, Volume 161, December 2021.

Hersteller zu diesem Thema

This could also be interesting for you!