Construction and performance of waterborne organosilicon anti-fouling coating based on hydrosilylation
Under the background of “Dual Carbon” strategy, the coating technology of silicon-based materials replacing carbon-based materials has become a research hotspot. Owing to high-viscosity characteristic of raw materials involving divinyl-terminated polydimethylsiloxane (ViPDMSVi) and reinforcing components, existing approaches for the preparation of organosilicon coatings by hydrosilylation still consume a large amount of organic solvents, causing environmental pollution and inconsistent with the low-carbon strategy. Herein, a robust strategy to prepare hydrosilylation waterborne organosilicon coatings via rational design of the emulsification system to obtain two-component aqueous emulsions is reported. In this strategy, two reactive organosilicon surfactants were synthesized and compounded with corresponding anionic surfactants for emulsification of vinyl organosilicon components and polymethylhydrosiloxane (PMHS), respectively.
Event Tip: Waterborne High Performance Coatings
Explore the advantages and application of waterborne coatings known for their high performance across various industries. This tutorial will delve into topics including formulation innovations, VOC regulations, durability testing, and emerging trends in waterborne technology. Join us online on 19 Sep 2024 for the EC Short Course “Waterborne High Performance Coatings” and stay ahead in the evolution of sustainable coating solutions.
The resultant two emulsions were cured via hydrosilylation to obtain the desired coating. Additionally, vinyl MQ resin was selected as reinforcing component to increase the density of the coating. The facts that water, ethanol, mud water and other common liquids can slide off cleanly, and oily markers on the coating surface can be easily wiped off, indicate the outstanding anti-fouling properties of the coating. Furthermore, even under various harsh environments such as high temperature, ultraviolet radiation and chemical corrosion, the coating still shows good anti-fouling performance. This work opens up a viable avenue for the preparation of waterborne organosilicon anti-fouling coatings.
Source: Progress in Organic Coatings, Volume 185.