Physical vapor deposition-based metallic coatings on steel
An effective way to protect the steel surface from degradation is to develop a coating on top of the steel substrate. A wide variety of coating deposition processes are available to develop protective coatings on steel. To date, several processes like hot-dip galvanisation (HDG), electrogalvanisation (EG), and physical vapor deposition (PVD) have been investigated. Among them, the most commonly used methods are hot-dip galvanisation and electrogalvanisation.
HDG is used extensively due to lower cost, shorter process time, the requirement of lesser maintenance, uniform protection, and ease of deposition at a larger scale. On the other hand, EG promises in providing advantages like versatility in the coating composition, good surface finish, uniformity in the coating, lower coating thickness, etc. Although both processes provide different advantages, there are always drawbacks limiting their applications. To overcome different limitations of conventional processes and for further advancement of protective coatings, PVD has received increased attention in recent years over hot dipping and electroplating.
Industrial competency of PVD in the steel industry
PVD process provides a more uniform deposit, higher accuracy, very low thickness, improved adhesion, a wider choice of materials, and no environmental pollution. A new paper reviews the scope and prospect of the PVD technique for the steel industry over HDG and EG. The paper focuses on different kinds of PVD techniques, their advantages, and disadvantages. An emphasis has been given to the recent development of Zn- and Al-based PVD coatings on steel substrates. The industrial competency of PVD in the steel industry has been discussed in this article. Challenges associated with the commercialisation of the process and recommendations for further improvement have also been discussed.
The review has been published in Journal of Coatings Technology and Research Volume 19, 2022.