POSS-vinyl-urethane acrylate-based nanohybrid coating materials

Researchers have discovered that the addition of POSSV compounds significantly improves the thermal and physical properties of nanohybrid coating materials.

Nanotechnology is playing an increasingly important role in the field of coating materials. Source: Siarhei - Adobe.Stock

The research proves that the use of UV-curable epoxy resin-based urethane acrylate resin in combination with POSSV additives is a promising strategy for the development of high-quality coating materials.The effect of POSS-vinyl-heptaisobutyl-substituted (POSSV) compounds as an inorganic additive on the thermal and physical properties of nanohybrid coating materials based on urethane acrylate (UA) resin has been investigated. A diol compound obtained from the reaction of itaconic acid and 1,2-epoxy cyclohexane has been used to produce an UV curable epoxy-based urathane acrylate resin. Nanohybrid coating materials were obtained by curing the UA resin with UV radiation through the thiol–ene reaction, mixed with various amounts of POSSV compounds. The structure of the UA resin was characterized by Fourier-transform infrared spectroscopy and nuclear magnetic resonance spectroscopy techniques.


Event Tip: EC Conference Bio-based & Water-based Coatings

Unlock the future of sustainable coatings at the EC Conference Bio-based & Water-based Coatings 2024! This conference serves as a focal point for scientists and experts in bio-based, water-based coatings, and sustainability. Join us on November 5th – 6th, 2024, in Cologne, Germany, for a deep dive into the latest advancements, breakthroughs, and trends. Connect with leading experts, researchers, and industry leaders who will share invaluable insights and knowledge. The conference provides a unique platform for networking, enabling you to ask questions and engage with the right people in the field.

Hurry and take advantage of the early bird ticket offer available until September 3rd! Don’t miss this opportunity to secure your spot at the forefront of bio-based and water-based coatings technology! Register now!


The UV curing process was also studied by the double bond conversion method. Aggregation of the nanohybrid materials was determined by X-ray diffraction. The thermal, non-flammability, and thermomechanical properties of the samples were examined by thermogravimetric analysis, limiting oxygen index, and dynamic mechanical analysis techniques. Light transmittance of the samples was determined by UV–Vis spectrophotometry, and their morphological structure was determined by scanning electron microscopy. In addition, gel contents, swelling rates, hardness, adhesion, contact angles, and resistance to chemicals and solvents of the samples were examined. In conclusion, nanohybrid materials obtained from the synthesized UA resin and improved with POSSV additive can be used in the coating industry.

The reasearch has been published un Journal of Coatings Technology and Research, Volume 21, November 2023.

Hersteller zu diesem Thema

This could also be interesting for you!