Self-healing coatings for corrosion protection
Among the different types of photothermal-responsive materials, carbon-based materials, organic species, plasmonic nanomaterials, MXene, and Fe3O4 nanoparticles are commonly used as fillers in self-healing coatings. These photothermal fillers generate abundant heat under specific light irradiation at certain wavelengths, stimulating a series of physical or chemical reactions for recovering the barrier properties of coatings. Based on intrinsic and extrinsic self-healing strategies, several photothermally activated self-healing methods, including the melting of coating matrix or fillers, shape memory effect and thermoreversible reaction of coating matrix, and release of corrosion inhibitors, are introduced.
Excellent self-healing performance
Typical self-healing performance and advantages and weaknesses of different self-healing mechanisms are elaborately discussed. Compared with extrinsic self-healing strategies, intrinsic ones can improve the cyclic self-healing performance under photothermal excitation. Moreover, a combination of multiple healing mechanisms yields excellent self-healing performance, which facilitates the long-term protective capability of coatings. Finally, current difficulties and future development perspectives associated with photothermally activated self-healing coatings are analyzed to promote research development and expand engineering applications.
The review has been published in Progress in Organic Coatings, Volume 185, December 2023.
Reading tip
The EC Tech Report Waterborne Protective Coatings gives you an extensive up-to-date bundle on protective coatings, focusing on water-borne solutions, with articles, videos and other content handpicked by the European Coatings Team. In addition to cutting-edge technical articles, the Tech Report is rounded off with valuable market insights and key fundamentals on water-borne protective coatings.