Synthesis of novel PVA-PFPAMA nanocomposites by the hydrothermal method
In a recent study, a mixture of poly 2-(4-fluorophenyl)-2-oxoethyl-2-methylprop-2-enoate (PFPAMA) and PVA was first prepared and characterized using the hydrothermal method. Copper (II) oxide nanoparticles (CuO NPs) prepared by solution plasma process (SPP) were hydrothermally incorporated into the PVA-PFPAMA blend at 3 %, 5 %, and 7 %. FTIR spectroscopy was used to identify the functional groups of the obtained materials. Morphological and structural analysis of the materials was investigated by scanning electron microscopy (SEM), X-ray diffraction (XRD), and atomic force microscopy (AFM).
Event Tip: Fundamentals of Functional Coatings
Dive into the world of functional coatings designed to offer specialized properties such as anti-fouling, anti-ice, easy-to-clean, and drag reduction. This tutorial will cover fundamental principles, materials selection, surface modification techniques, and case studies across different applications. Join us online on 03 Oct 2024 for the EC Short Course “Fundamentals of Functional Coatings” and explore how these coatings are transforming industries worldwide.
The glass transition temperatures (Tg) of the materials were investigated by differential scanning calorimetry (DSC), and their thermal stability by thermogravimetric analysis (TGA). All materials showed excellent antimicrobial effects against E. coli, S. aureus, and C. albicans strains. It was also found that the anticarcinogenic activity increased with the proportion of CuO NPs in the nanocomposites. The results showed that the thermal and biological properties of the nanocomposites were positively affected after the inclusion of CuO NPs in the PVA-PFPAMA blend. The synergistic effects of PFPAMA and CuO NPs improved the overall performance of the materials.
Source: Progress in Organic Coatings, Volume 185, December 2023, 107889